

KJ-456

M.Sc. (Chemistry) 3rd Semester Examination, June, 2020

Paper - III

Catalysis, Solid State and Surface Chemistry

<i>Time</i> : Three Hours]	[Maximum Marks : 80	
----------------------------	---------------------	--

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

1.	<i>(a)</i>	Define acid-base catalysis. Discuss			
		kinetics of general and specific acid-base catalysis with suitable examples.	10		
	(<i>b</i>)	Discuss principle of hard and soft acid and bases.	6		
	(<i>c</i>)	What is enzyme catalysis.	4		
OR					

94_JDB_*_(4)

(Turn Over)

	Why Hammett equation is called linear free energy relationship (LFER)? Discuss application of Hammett acidity function in study of kinetics of chemical reactions.	10	
(<i>b</i>)	Discuss any two electronic and structural effects.	6	
(<i>c</i>)	What is bronsted catalysis?	4	
	Unit-II		
(a)	Define critical micellar concentration (CMC). Discuss factors affecting the CMC of surfactants. How will you determine CMC of a surfactant by any one method ?	10	
(<i>b</i>)	Derive Kelvin equation for vapour pressure of droplets of liquid.	6	
(<i>c</i>)	Write a note on microemulsion.	4	
OR			
(<i>a</i>)	Derive the equation :	10	
	$I = -\frac{1}{RT} \left[\frac{dy}{d \ln c} \right]_T$		
(<i>b</i>)	Explain thermodynamics of micellization.	6	
(<i>c</i>)	Write note on reverse micelles.	4	

(2)

94_JDB_★_(4)

2.

(Continued)

(3)

Unit-III

3.	(<i>a</i>)	Define crystal defects. Discuss Schottky defect and Frankel defect and also their thermodynamic aspects.	10			
	(<i>b</i>)	What is intrinsic semiconductors?	6			
	(<i>c</i>)	Write note on perfect and imperfect crystals.	4			
		OR				
	(<i>a</i>)	a) Explain molecular orbital theory or band				
		theory of semiconductors.	10			
	<i>(b)</i>	Describe n-type semiconductors.				
	(<i>c</i>)	Write note on formation of colour centre.				
Unit-IV						
4.	(<i>a</i>)	Discuss kinetics of addition and condensation polymerisation.	10			
	(<i>b</i>)	Explain, why weight average molecular mass is always greater than number				
		average molar mass of a polymer.	6			
	(<i>c</i>)	Write a note on kinetics of polymerisation.	4			

OR

(a)	How is the	molec	ular m	ass of a po	olymer	
	determined	by	light	scattering	and	
	viscometry	metho	ds ?			10

94_JDB_★_(4)

(Turn Over)

(<i>b</i>)	How can you suggest the mechanism of	
	free radical polymerisation?	6
(<i>c</i>)	Write a note on fire resistant polymer.	4

(4)

_

94_JDB_★_(4)

40